AI

For successful AI projects, celebrate your graveyard and be prepared to fail fast

Comment

Image of an origami crane and several crumpled pieces of paper to represent success from failure.
Image Credits: Wachiwit (opens in a new window) / Getty Images

AI teams invest a lot of rigor in defining new project guidelines. But the same is not true for killing existing projects. In the absence of clear guidelines, teams let infeasible projects drag on for months.

They put up a dog and pony show during project review meetings for fear of becoming the messengers of bad news. By streamlining the process to fail fast on infeasible projects, teams can significantly increase their overall success with AI initiatives.

AI projects are different from traditional software projects. They have a lot more unknowns: availability of right datasets, model training to meet required accuracy threshold, fairness and robustness of recommendations in production, and many more.

In order to fail fast, AI initiatives should be managed as a conversion funnel analogous to marketing and sales funnels. Projects start at the top of the five-stage funnel and can drop off at any stage, either to be temporarily put on ice or permanently suspended and added to the AI graveyard. Each stage of the AI funnel defines a clear set of unknowns to be validated with a list of time-bound success criteria.

The AI project funnel has five stages:

Image Credits: Sandeep Uttamchandani

1. Problem definition: “If we build it, will they come?”

This is the top of the funnel. AI projects require significant investments not just during initial development but ongoing monitoring and refinement. This makes it important to verify that the problem being solved is truly worth solving with respect to potential business value compared to the effort to build. Even if the problem is worth solving, AI may not be required. There might be easier human-encoded heuristics to solve the problem.

Developing the AI solution is only half the battle. The other half is how the solution will actually be used and integrated. For instance, in developing an AI solution for predicting customer churn, there needs to be a clear understanding of incorporating attrition predictions in the customer support team workflow. A perfectly powerful AI project will fail to deliver business value without this level of integration clarity.

To successfully exit this stage, the following statements need to be true:

  • The AI project will produce tangible business value if delivered successfully.
  • There are no cheaper alternatives that can address the problem with the required accuracy threshold.
  • There is a clear path to incorporate the AI recommendations within the existing flow to make an impact.

In my experience, the early stages of the project have a higher ratio of aspiration compared to ground realities. Killing an ill-formed project can avoid teams from building “solutions in search of problems.”

2. Data availability : “We have the data to build it.”

At this stage of the funnel, we have verified the problem is worth solving. We now need to confirm the data availability to build the perception, learning and reasoning capabilities required in the AI project. Data needs vary based on the type of AI project  —  the requirements for a project building classification intelligence will be different from one providing recommendations or ranking.

Data availability broadly translates to having the right quality, quantity and features. Right quality refers to the fact that the data samples are an accurate reflection of the phenomenon we are trying to model  and meet properties such as independent and identically distributed. Common quality checks involve uncovering data collection errors, inconsistent semantics and errors in labeled samples.

The right quantity refers to the amount of data that needs to be available. A common misconception is that a significant amount of data is required for training machine learning models. This is not always true. Using pre-built transfer learning models, it is possible to get started with very little data. Also, more data does not always mean useful data. For instance, historic data spanning 10 years may not be a true reflection of current customer behavior. Finally, the right features need to be available to build the model. This is typically iterative and involves ML model design.

To successfully exit this stage, the following statements need to be true:

  • The datasets for the required features are available.
  • The corresponding datasets meet the quality requirements.
  • There are enough historic data samples available in those datasets.

In my experience, projects often are put on ice at this stage. The required features are missing and may take several months for the application teams to gather the datasets.

3. Model training :  “The project meets the accuracy thresholds.”

At this stage, we have confirmed the data is available and have iterated on ML model features. Now, it’s time to verify whether a model can actually be built to satisfy the required accuracy threshold.

Training is an iterative process where different combinations of ML algorithms, model configuration, datasets and input features are tried iteratively with the goal to meet the accuracy threshold. Training is resource-intensive, and given large datasets, the infrastructure capacity can become the limiting factor. This stage verifies that it is feasible to build the model using the existing infrastructure resources or within a feasible cloud budget.

5 machine learning essentials nontechnical leaders need to understand

During the training phase, there is the potential for “false alarms,” when the team has achieved significantly high accuracy numbers that are too good to be true. Before getting excited, it is important to double-check for the training and validation datasets to have duplicate samples. Also, there have been times when the initial tests might be promising but may not generalize over the entire dataset. Randomization of the dataset before training helps to avoid the roller coaster of accuracy variations.

To successfully exit this stage, the AI project is able to meet the required accuracy threshold after training.

4. Results fairness : “Generated results are  not garbage in, garbage out.”

We have confirmed the project can meet accuracy thresholds. Now, it’s time to verify that the results generated are actually fair with respect to bias, explainability, and compliance to privacy and data rights regulations.

Ensuring the fairness of AI recommendations is a topic of significant research. Most datasets are inherently biased and may not capture all the available attributes. Understanding the original purpose and assumptions of the dataset are important. Another common form of bias is underrepresentation —  for instance, a loan underwriting application not trained for a certain category of users or income range scenarios. It is important to evaluate model performance not just for overall accuracy but also across various data slices.

It is not just sufficient for the AI solution to be accurate — it needs to be explainable, i.e., how the algorithm arrived at its conclusions. Several regulated industries using automated decision-making tools are required to provide meaningful information about the generated results to their customers. Explainability can be supported in different forms: result visualization, feature correlations, what-if analysis, model cause-effect interpretability, etc.

To successfully exit this stage, the following statements need to be true:

  • Results have the appropriate checks and bounds for bias and are explainable.
  • The data used by the AI project meets user privacy and compliance regulations such as GDPR and CCPA.

5. Operational fitness: “Is it ready for production ?”

The last stage is to confirm operational fitness. Not all projects require the same operational rigor. I divide projects in a 2×2 matrix based on whether the training and inference are online versus offline. Offline training and inference are the easiest, while online training requires robust data pipelines and monitoring.

There are three core dimensions of operational fitness: model complexity, data pipelines robustness and retraining governance. Complex models are difficult to maintain and debug in production. The key is striking the right balance between simplicity and accuracy: A simple model may be less accurate, while a complex model may be more accurate but may not generalize to new data samples due to overfitting. Similarly, data pipelines are complex to manage given changing data schemas, quality issues and nonstandard business metrics. Finally, retraining needs to take into account changing accuracy due to shifts in data distribution as well as the semantics of features, aka concept drift.

To successfully exit this stage, the following statements need to be true:

  • Models have been optimized with the right balance between complexity and accuracy.
  • Data pipelines are robust with the required level of monitoring.
  • The right level of data and concept drift monitoring is implemented for model retraining.

To succeed in AI initiatives, teams need to fail fast. The five-stage conversion funnel provides a vocabulary for AI teams to communicate the status of projects to business teams replacing their black-box perception of these projects with a list of known unknowns. The funnel also helps identify common dropoff stages across projects that are potential areas of improvement. In a fail-fast culture, the AI graveyard is celebrated for the lessons learned that can be applied to future projects.

How we dodged risks and raised millions for our open-source machine learning startup

More TechCrunch

Cargo ships docking at a commercial port incur costs called “disbursements” and “port call expenses.” This might be port dues, towage, and pilotage fees. It’s a complex patchwork and all…

Shipping logistics startup Harbor Lab raises $16M Series A led by Atomico

AWS has confirmed its European “sovereign cloud” will go live by the end of 2025, enabling greater data residency for the region.

AWS confirms will launch European ‘sovereign cloud’ in Germany by 2025, plans €7.8B investment over 15 years

Go Digit, an Indian insurance startup, has raised $141 million from investors including Goldman Sachs, ADIA, and Morgan Stanley as part of its IPO.

Indian insurance startup Go Digit raises $141M from anchor investors ahead of IPO

Peakbridge intends to invest in between 16 and 20 companies, investing around $10 million in each company. It has made eight investments so far.

Food VC Peakbridge has new $187M fund to transform future of food, like lab-made cocoa

For over six decades, the nonprofit has been active in the financial services sector.

Accion’s new $152.5M fund will back financial institutions serving small businesses globally

Meta’s newest social network, Threads, is starting its own fact-checking program after piggybacking on Instagram and Facebook’s network for a few months.

Threads finally starts its own fact-checking program

Looking Glass makes trippy-looking mixed-reality screens that make things look 3D without the need of special glasses. Today, it launches a pair of new displays, including a 16-inch mode that…

Looking Glass launches new 3D displays

Replacing Sutskever is Jakub Pachocki, OpenAI’s director of research.

Ilya Sutskever, OpenAI co-founder and longtime chief scientist, departs

Intuitive Machines made history when it became the first private company to land a spacecraft on the moon, so it makes sense to adapt that tech for Mars.

Intuitive Machines wants to help NASA return samples from Mars

As Google revamps itself for the AI era, offering AI overviews within its search results, the company is introducing a new way to filter for just text-based links. With the…

Google adds ‘Web’ search filter for showing old-school text links as AI rolls out

Blue Origin’s New Shepard rocket will take a crew to suborbital space for the first time in nearly two years later this month, the company announced on Tuesday.  The NS-25…

Blue Origin to resume crewed New Shepard launches on May 19

This will enable developers to use the on-device model to power their own AI features.

Google is building its Gemini Nano AI model into Chrome on the desktop

It ran 110 minutes, but Google managed to reference AI a whopping 121 times during Google I/O 2024 (by its own count). CEO Sundar Pichai referenced the figure to wrap…

Google mentioned ‘AI’ 120+ times during its I/O keynote

Firebase Genkit is an open source framework that enables developers to quickly build AI into new and existing applications.

Google launches Firebase Genkit, a new open source framework for building AI-powered apps

In the coming months, Google says it will open up the Gemini Nano model to more developers.

Patreon and Grammarly are already experimenting with Gemini Nano, says Google

As part of the update, Reddit also launched a dedicated AMA tab within the web post composer.

Reddit introduces new tools for ‘Ask Me Anything,’ its Q&A feature

Here are quick hits of the biggest news from the keynote as they are announced.

Google I/O 2024: Here’s everything Google just announced

LearnLM is already powering features across Google products, including in YouTube, Google’s Gemini apps, Google Search and Google Classroom.

LearnLM is Google’s new family of AI models for education

The official launch comes almost a year after YouTube began experimenting with AI-generated quizzes on its mobile app. 

Google is bringing AI-generated quizzes to academic videos on YouTube

Around 550 employees across autonomous vehicle company Motional have been laid off, according to information taken from WARN notice filings and sources at the company.  Earlier this week, TechCrunch reported…

Motional cut about 550 employees, around 40%, in recent restructuring, sources say

The keynote kicks off at 10 a.m. PT on Tuesday and will offer glimpses into the latest versions of Android, Wear OS and Android TV.

Google I/O 2024: Watch all of the AI, Android reveals

Google Play has a new discovery feature for apps, new ways to acquire users, updates to Play Points, and other enhancements to developer-facing tools.

Google Play preps a new full-screen app discovery feature and adds more developer tools

Soon, Android users will be able to drag and drop AI-generated images directly into their Gmail, Google Messages and other apps.

Gemini on Android becomes more capable and works with Gmail, Messages, YouTube and more

Veo can capture different visual and cinematic styles, including shots of landscapes and timelapses, and make edits and adjustments to already-generated footage.

Google Veo, a serious swing at AI-generated video, debuts at Google I/O 2024

In addition to the body of the emails themselves, the feature will also be able to analyze attachments, like PDFs.

Gemini comes to Gmail to summarize, draft emails, and more

The summaries are created based on Gemini’s analysis of insights from Google Maps’ community of more than 300 million contributors.

Google is bringing Gemini capabilities to Google Maps Platform

Google says that over 100,000 developers already tried the service.

Project IDX, Google’s next-gen IDE, is now in open beta

The system effectively listens for “conversation patterns commonly associated with scams” in-real time. 

Google will use Gemini to detect scams during calls

The standard Gemma models were only available in 2 billion and 7 billion parameter versions, making this quite a step up.

Google announces Gemma 2, a 27B-parameter version of its open model, launching in June

This is a great example of a company using generative AI to open its software to more users.

Google TalkBack will use Gemini to describe images for blind people