AI

For successful AI projects, celebrate your graveyard and be prepared to fail fast

Comment

Image of an origami crane and several crumpled pieces of paper to represent success from failure.
Image Credits: Wachiwit (opens in a new window) / Getty Images

AI teams invest a lot of rigor in defining new project guidelines. But the same is not true for killing existing projects. In the absence of clear guidelines, teams let infeasible projects drag on for months.

They put up a dog and pony show during project review meetings for fear of becoming the messengers of bad news. By streamlining the process to fail fast on infeasible projects, teams can significantly increase their overall success with AI initiatives.

AI projects are different from traditional software projects. They have a lot more unknowns: availability of right datasets, model training to meet required accuracy threshold, fairness and robustness of recommendations in production, and many more.

In order to fail fast, AI initiatives should be managed as a conversion funnel analogous to marketing and sales funnels. Projects start at the top of the five-stage funnel and can drop off at any stage, either to be temporarily put on ice or permanently suspended and added to the AI graveyard. Each stage of the AI funnel defines a clear set of unknowns to be validated with a list of time-bound success criteria.

The AI project funnel has five stages:

Image Credits: Sandeep Uttamchandani

1. Problem definition: “If we build it, will they come?”

This is the top of the funnel. AI projects require significant investments not just during initial development but ongoing monitoring and refinement. This makes it important to verify that the problem being solved is truly worth solving with respect to potential business value compared to the effort to build. Even if the problem is worth solving, AI may not be required. There might be easier human-encoded heuristics to solve the problem.

Developing the AI solution is only half the battle. The other half is how the solution will actually be used and integrated. For instance, in developing an AI solution for predicting customer churn, there needs to be a clear understanding of incorporating attrition predictions in the customer support team workflow. A perfectly powerful AI project will fail to deliver business value without this level of integration clarity.

To successfully exit this stage, the following statements need to be true:

  • The AI project will produce tangible business value if delivered successfully.
  • There are no cheaper alternatives that can address the problem with the required accuracy threshold.
  • There is a clear path to incorporate the AI recommendations within the existing flow to make an impact.

In my experience, the early stages of the project have a higher ratio of aspiration compared to ground realities. Killing an ill-formed project can avoid teams from building “solutions in search of problems.”

2. Data availability : “We have the data to build it.”

At this stage of the funnel, we have verified the problem is worth solving. We now need to confirm the data availability to build the perception, learning and reasoning capabilities required in the AI project. Data needs vary based on the type of AI project  —  the requirements for a project building classification intelligence will be different from one providing recommendations or ranking.

Data availability broadly translates to having the right quality, quantity and features. Right quality refers to the fact that the data samples are an accurate reflection of the phenomenon we are trying to model  and meet properties such as independent and identically distributed. Common quality checks involve uncovering data collection errors, inconsistent semantics and errors in labeled samples.

The right quantity refers to the amount of data that needs to be available. A common misconception is that a significant amount of data is required for training machine learning models. This is not always true. Using pre-built transfer learning models, it is possible to get started with very little data. Also, more data does not always mean useful data. For instance, historic data spanning 10 years may not be a true reflection of current customer behavior. Finally, the right features need to be available to build the model. This is typically iterative and involves ML model design.

To successfully exit this stage, the following statements need to be true:

  • The datasets for the required features are available.
  • The corresponding datasets meet the quality requirements.
  • There are enough historic data samples available in those datasets.

In my experience, projects often are put on ice at this stage. The required features are missing and may take several months for the application teams to gather the datasets.

3. Model training :  “The project meets the accuracy thresholds.”

At this stage, we have confirmed the data is available and have iterated on ML model features. Now, it’s time to verify whether a model can actually be built to satisfy the required accuracy threshold.

Training is an iterative process where different combinations of ML algorithms, model configuration, datasets and input features are tried iteratively with the goal to meet the accuracy threshold. Training is resource-intensive, and given large datasets, the infrastructure capacity can become the limiting factor. This stage verifies that it is feasible to build the model using the existing infrastructure resources or within a feasible cloud budget.

5 machine learning essentials nontechnical leaders need to understand

During the training phase, there is the potential for “false alarms,” when the team has achieved significantly high accuracy numbers that are too good to be true. Before getting excited, it is important to double-check for the training and validation datasets to have duplicate samples. Also, there have been times when the initial tests might be promising but may not generalize over the entire dataset. Randomization of the dataset before training helps to avoid the roller coaster of accuracy variations.

To successfully exit this stage, the AI project is able to meet the required accuracy threshold after training.

4. Results fairness : “Generated results are  not garbage in, garbage out.”

We have confirmed the project can meet accuracy thresholds. Now, it’s time to verify that the results generated are actually fair with respect to bias, explainability, and compliance to privacy and data rights regulations.

Ensuring the fairness of AI recommendations is a topic of significant research. Most datasets are inherently biased and may not capture all the available attributes. Understanding the original purpose and assumptions of the dataset are important. Another common form of bias is underrepresentation —  for instance, a loan underwriting application not trained for a certain category of users or income range scenarios. It is important to evaluate model performance not just for overall accuracy but also across various data slices.

It is not just sufficient for the AI solution to be accurate — it needs to be explainable, i.e., how the algorithm arrived at its conclusions. Several regulated industries using automated decision-making tools are required to provide meaningful information about the generated results to their customers. Explainability can be supported in different forms: result visualization, feature correlations, what-if analysis, model cause-effect interpretability, etc.

To successfully exit this stage, the following statements need to be true:

  • Results have the appropriate checks and bounds for bias and are explainable.
  • The data used by the AI project meets user privacy and compliance regulations such as GDPR and CCPA.

5. Operational fitness: “Is it ready for production ?”

The last stage is to confirm operational fitness. Not all projects require the same operational rigor. I divide projects in a 2×2 matrix based on whether the training and inference are online versus offline. Offline training and inference are the easiest, while online training requires robust data pipelines and monitoring.

There are three core dimensions of operational fitness: model complexity, data pipelines robustness and retraining governance. Complex models are difficult to maintain and debug in production. The key is striking the right balance between simplicity and accuracy: A simple model may be less accurate, while a complex model may be more accurate but may not generalize to new data samples due to overfitting. Similarly, data pipelines are complex to manage given changing data schemas, quality issues and nonstandard business metrics. Finally, retraining needs to take into account changing accuracy due to shifts in data distribution as well as the semantics of features, aka concept drift.

To successfully exit this stage, the following statements need to be true:

  • Models have been optimized with the right balance between complexity and accuracy.
  • Data pipelines are robust with the required level of monitoring.
  • The right level of data and concept drift monitoring is implemented for model retraining.

To succeed in AI initiatives, teams need to fail fast. The five-stage conversion funnel provides a vocabulary for AI teams to communicate the status of projects to business teams replacing their black-box perception of these projects with a list of known unknowns. The funnel also helps identify common dropoff stages across projects that are potential areas of improvement. In a fail-fast culture, the AI graveyard is celebrated for the lessons learned that can be applied to future projects.

How we dodged risks and raised millions for our open-source machine learning startup

More TechCrunch

A feature Google demoed at its I/O confab yesterday, using its generative AI technology to scan voice calls in real-time for conversational patterns associated with financial scams, has sent a…

Google’s call-scanning AI could dial up censorship by default, privacy experts warn

Google’s going all-in on AI — and it wants you to know it. During the company’s keynote at its I/O developer conference on Tuesday, Google mentioned “AI” more than 120…

The top AI announcements from Google I/O

Uber is taking a shuttle product it developed for commuters in India and Egypt and converting it for an American audience. The ride-hail and delivery giant announced Wednesday at its…

Uber has a new way to solve the concert traffic problem

Here are quick hits of the biggest news from the keynote as they are announced.

Google I/O 2024: Here’s everything Google just announced

Google is preparing to launch a new system to help address the problem of malware on Android. Its new live threat detection service leverages Google Play Protect’s on-device AI to…

Google takes aim at Android malware with an AI-powered live threat detection service

Users will be able to access the AR content by first searching for a location in Google Maps.

Google Maps is getting geospatial AR content later this year

The heat pump startup unveiled its first products and revealed details about performance, pricing and availability.

Quilt heat pump sports sleek design from veterans of Apple, Tesla, and Nest

The space is available from the launcher and can be locked as a second layer of authentication.

Google’s new Private Space feature is like Incognito Mode for Android

Gemini, the company’s family of generative AI models, will enhance the smart TV operating system so it can generate descriptions for movies and TV shows.

Google TV to launch AI-generated movie descriptions

When triggered, the AI-powered feature will automatically lock the device down.

Android’s new Theft Detection Lock helps deter smartphone snatch and grabs

The company said it is increasing the on-device capability of its Google Play Protect system to detect fraudulent apps trying to breach sensitive permissions.

Google adds live threat detection and screen-sharing protection to Android

This latest release, one of many announcements from the Google I/O 2024 developer conference, focuses on improved battery life and other performance improvements, like more efficient workout tracking.

Wear OS 5 hits developer preview, offering better battery life

For years, Sammy Faycurry has been hearing from his dietician mom and sister about how poorly many Americans eat and their struggles with delivering nutritional counseling. Although nearly half of…

Dietitian startup Fay has been booming from Ozempic patients and emerges from stealth with $25M from General Catalyst, Forerunner

Apple is bringing new accessibility features to iPads and iPhones, designed to cater to a diverse range of user needs.

Apple announces new accessibility features for iPhone and iPad users

TechCrunch Disrupt, our flagship startup event held annually in San Francisco, is back on October 28-30 — and you can expect a bustling crowd of thousands of startup enthusiasts. Exciting…

Startup Blueprint: TC Disrupt 2024 Builders Stage agenda sneak peek!

Mike Krieger, one of the co-founders of Instagram and, more recently, the co-founder of personalized news app Artifact (which TechCrunch corporate parent Yahoo recently acquired), is joining Anthropic as the…

Anthropic hires Instagram co-founder as head of product

Seven orgs so far have signed on to standardize the way data is collected and shared.

Venture orgs form alliance to standardize data collection

As cloud adoption continues to surge toward the $1 trillion mark in annual spend, we’re seeing a wave of enterprise startups gaining traction with customers and investors for tools to…

Alkira connects with $100M for a solution that connects your clouds

Charging has long been the Achilles’ heel of electric vehicles. One startup thinks it has a better way for apartment dwelling EV drivers to charge overnight.

Orange Charger thinks a $750 outlet will solve EV charging for apartment dwellers

So did investors laugh them out of the room when they explained how they wanted to replace Quickbooks? Kind of.

Embedded accounting startup Layer secures $2.3M toward goal of replacing QuickBooks

While an increasing number of companies are investing in AI, many are struggling to get AI-powered projects into production — much less delivering meaningful ROI. The challenges are many. But…

Weka raises $140M as the AI boom bolsters data platforms

PayHOA, a previously bootstrapped Kentucky-based startup that offers software for self-managed homeowner associations (HOAs), is an example of how real-world problems can translate into opportunity. It just raised a $27.5…

Meet PayHOA, a profitable and once-bootstrapped SaaS startup that just landed a $27.5M Series A

Restaurant365, which offers a restaurant management suite, has raised a hot $175M from ICONIQ Growth, KKR and L Catterton.

Restaurant365 orders in $175M at $1B+ valuation to supersize its food service software stack 

Venture firm Shilling has launched a €50M fund to support growth-stage startups in its own portfolio and to invest in startups everywhere else. 

Portuguese VC firm Shilling launches €50M opportunity fund to back growth-stage startups

Chang She, previously the VP of engineering at Tubi and a Cloudera veteran, has years of experience building data tooling and infrastructure. But when She began working in the AI…

LanceDB, which counts Midjourney as a customer, is building databases for multimodal AI

Trawa simplifies energy purchasing and management for SMEs by leveraging an AI-powered platform and downstream data from customers. 

Berlin-based trawa raises €10M to use AI to make buying renewable energy easier for SMEs

Lydia is splitting itself into two apps — Lydia for P2P payments and Sumeria for those looking for a mobile-first bank account.

Lydia, the French payments app with 8 million users, launches mobile banking app Sumeria

Cargo ships docking at a commercial port incur costs called “disbursements” and “port call expenses.” These might include port dues, towage, and pilotage fees. It’s a complex patchwork and all…

Shipping logistics startup Harbor Lab raises $16M Series A led by Atomico

AWS has confirmed its European “sovereign cloud” will go live by the end of 2025, enabling greater data residency for the region.

AWS confirms it will launch European ‘sovereign cloud’ in Germany by 2025, plans €7.8B investment over 15 years

Go Digit, an Indian insurance startup, has raised $141 million from investors, including Goldman Sachs, ADIA, and Morgan Stanley, as part of its IPO.

Indian insurance startup Go Digit raises $141M from anchor investors ahead of IPO