Startups

Financial firms should leverage machine learning to make anomaly detection easier

Comment

Machine learning can make anolmaly detection easier
Image Credits: GOCMEN (opens in a new window) / Getty Images

Bikram Singh

Contributor

Bikram Singh is the CEO and co-founder of EZOPS. He has built and managed operational services and technology solutions for banks, hedge funds, asset managers, fund administrators and custodians.

Anomaly detection is one of the more difficult and underserved operational areas in the asset-servicing sector of financial institutions. Broadly speaking, a true anomaly is one that deviates from the norm of the expected or the familiar. Anomalies can be the result of incompetence, maliciousness, system errors, accidents or the product of shifts in the underlying structure of day-to-day processes.

For the financial services industry, detecting anomalies is critical, as they may be indicative of illegal activities such as fraud, identity theft, network intrusion, account takeover or money laundering, which may result in undesired outcomes for both the institution and the individual.

Detecting outlier data, or anomalies according to historic data patterns and trends can enrich a financial institution’s operational team by increasing their understanding and preparedness.

The challenge of detecting anomalies

Anomaly detection presents a unique challenge for a variety of reasons. First and foremost, the financial services industry has seen an increase in the volume and complexity of data in recent years. In addition, a large emphasis has been placed on the quality of data, turning it into a way to measure the health of an institution.

To make matters more complicated, anomaly detection requires the prediction of something that has not been seen before or prepared for. The increase in data and the fact that it is constantly changing exacerbates the challenge further.

Leveraging machine learning

There are different ways to address the challenge of anomaly detection, including supervised and unsupervised learning.

With supervised learning, a model is taught to recognize categories based on labeled data that maps a set of inputs to a known set of outputs and arrives at a function that can decode incoming signals with sufficient fidelity to determine the correct response. In theory, a supervised model could be trained to recognize previous anomalous behavior, reducing the problem to binary classification of “anomalous” or “not anomalous”. This, however, would not help detect novel forms of anomalous behavior.

That is where unsupervised anomaly detection algorithms come in. Unsupervised learning tools such as autoencoders do not require labeled data and therefore enable the detection of novel data points or outliers by virtue of their reliance on prevalent classes.

Unsupervised learning offers a solution

Within the larger family of unsupervised learning algorithms for anomaly detection there are different approaches to take including clustering algorithms, isolation forests, local outlier factors and autoencoders.

Autoencoders, in particular, offer a reliable solution. In simple terms, this algorithm seeks to encode “healthy” data patterns acquired through exposure to clean data structures in the training set. It does this by first decoding the inputs in a process similar to principal component analysis, which it then uses to build an encoding layer that attempts to recreate its inputs with some measure of fidelity. The measure is termed a reconstruction error. The idea here is that the model will have lower reconstruction errors for normal or “healthy” data, but higher errors for anomalous or novel data.

The main advantage of the autoencoder rests on its ability to turn the class imbalance problem on its head, since it relies on the prevalent class to learn good patterns. This removes the need to acquire representative target class samples, as is the case for supervised learning. Focusing on the population (normal) rather than the target (anomalies) ensures it is more likely to detect novel cases as they arise. Furthermore, unlike clustering algorithms, autoencoders can be taught to treat once-anomalous data points as normal simply by including them in the training set.

The challenge of explainability

By far the biggest challenge in machine learning today is having the ability to explain predictions. Accurately justifying the algorithm’s actions and extracting the root cause of the event is of immense value, since it allows teams to not only detect suspicious, harmful, and anomalous events and properly audit them, it also provides valuable intelligence that enables timelier intervention.

There are very few tools that can offer the granularity needed to explain individual predictions. As an example, some models can identify “CURRENCY” as a global feature of high predictive value, but it can’t point out which local value (i.e., USD, JPY, EUR) is most likely to be the correct one.

With that in mind, the solution lies in developing a method that encodes feature values into a single individual signature, which can then compare against known signatures in the clean benchmark set. A similarity measure (Levenshtein distances) can be used to find the closest data points to the anomalous entry in the benchmark set, which are then categorized as most similar, or having most support.

The most similar measure returns the record that most closely resembles the signature regardless of the number of instances of it in the benchmark set that back up the comparison. The best support measure, on the other hand, returns similarity scores above an established threshold, choosing the one with the highest number of support samples in the benchmark set. With the record to compare against, the signature can be deconstructed in order to establish which of its constituent parts is responsible for any differences, thus identifying the likely anomalies.

Preventing bad data

With all eyes on data, it’s crucial that financial institutions find solutions to detect anomalies upfront, thereby preventing bad data from infecting downstream processes. Machine learning can be applied to detect the data anomalies as well as identify the reasons for them, effectively reducing the time spent researching and rectifying executions.

5 machine learning essentials nontechnical leaders need to understand

More TechCrunch

Featured Article

Unicorn-rich VC Wesley Chan owes his success to a Craigslist job washing lab beakers

While all of Wesley Chan’s success has been well-documented over the years, his personal journey…not so much. Chan spoke to TechCrunch about the ways his life impacts how he invests in startups.

12 mins ago
Unicorn-rich VC Wesley Chan owes his success to a Craigslist job washing lab beakers

Presumptive Republican presidential nominee Donald Trump now has an account on the short-form video app that he once tried to ban. Trump’s TikTok account, which launched on Saturday night, features…

Trump takes off on TikTok

With fewer than 400,000 inhabitants, Iceland receives more than its fair share of tourists — and of venture capital.

Iceland’s startup scene is all about making the most of the country’s resources

Kobo put out a handful of new e-readers a few weeks back: color versions of the excellent Libra 2 and Clara, as well as an updated monochrome version of the…

Kobo’s new e-readers are a sidegrade most can skip (with one exception)

In an interview at his home near Reykjavík, the entrepreneur-turned-VC shared thoughts on his ventures and the journey that led him from Unity to climate tech, a homecoming of sorts.

Unity co-founder David Helgason’s next act: Gaming the climate crisis

Welcome back to TechCrunch’s Week in Review — TechCrunch’s newsletter recapping the week’s biggest news. Want it in your inbox every Saturday? Sign up here. Over the past eight years,…

Fisker collapsed under the weight of its founder’s promises

What is AI? We’ve put together this non-technical guide to give anyone a fighting chance to understand how and why today’s AI works.

WTF is AI?

President Joe Biden has vetoed H.J.Res. 109, a congressional resolution that would have overturned the Securities and Exchange Commission’s current approach to banks and crypto. Specifically, the resolution targeted the…

President Biden vetoes crypto custody bill

Featured Article

Industries may be ready for humanoid robots, but are the robots ready for them?

How large a role humanoids will play in that ecosystem is, perhaps, the biggest question on everyone’s mind at the moment.

23 hours ago
Industries may be ready for humanoid robots, but are the robots ready for them?

VCs are clamoring to invest in hot AI companies, and willing to pay exorbitant share prices for coveted spots on their cap tables. Even so, most aren’t able to get…

VCs are selling shares of hot AI companies like Anthropic and xAI to small investors in a wild SPV market

The fashion industry has a huge problem: Despite many returned items being unworn or undamaged, a lot, if not the majority, end up in the trash. An estimated 9.5 billion…

Deal Dive: How (Re)vive grew 10x last year by helping retailers recycle and sell returned items

Tumblr officially shut down “Tips,” an opt-in feature where creators could receive one-time payments from their followers.  As of today, the tipping icon has automatically disappeared from all posts and…

You can no longer use Tumblr’s tipping feature 

Generative AI improvements are increasingly being made through data curation and collection — not architectural — improvements. Big Tech has an advantage.

AI training data has a price tag that only Big Tech can afford

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: Can we (and could we ever) trust OpenAI?

Jasper Health, a cancer care platform startup, laid off a substantial part of its workforce, TechCrunch has learned.

General Catalyst-backed Jasper Health lays off staff

Featured Article

Live Nation confirms Ticketmaster was hacked, says personal information stolen in data breach

Live Nation says its Ticketmaster subsidiary was hacked. A hacker claims to be selling 560 million customer records.

2 days ago
Live Nation confirms Ticketmaster was hacked, says personal information stolen in data breach

Featured Article

Inside EV startup Fisker’s collapse: how the company crumbled under its founders’ whims

An autonomous pod. A solid-state battery-powered sports car. An electric pickup truck. A convertible grand tourer EV with up to 600 miles of range. A “fully connected mobility device” for young urban innovators to be built by Foxconn and priced under $30,000. The next Popemobile. Over the past eight years, famed vehicle designer Henrik Fisker…

2 days ago
Inside EV startup Fisker’s collapse: how the company crumbled under its founders’ whims

Late Friday afternoon, a time window companies usually reserve for unflattering disclosures, AI startup Hugging Face said that its security team earlier this week detected “unauthorized access” to Spaces, Hugging…

Hugging Face says it detected ‘unauthorized access’ to its AI model hosting platform

Featured Article

Hacked, leaked, exposed: Why you should never use stalkerware apps

Using stalkerware is creepy, unethical, potentially illegal, and puts your data and that of your loved ones in danger.

2 days ago
Hacked, leaked, exposed: Why you should never use stalkerware apps

The design brief was simple: each grind and dry cycle had to be completed before breakfast. Here’s how Mill made it happen.

Mill’s redesigned food waste bin really is faster and quieter than before

Google is embarrassed about its AI Overviews, too. After a deluge of dunks and memes over the past week, which cracked on the poor quality and outright misinformation that arose…

Google admits its AI Overviews need work, but we’re all helping it beta test

Welcome to Startups Weekly — Haje‘s weekly recap of everything you can’t miss from the world of startups. Sign up here to get it in your inbox every Friday. In…

Startups Weekly: Musk raises $6B for AI and the fintech dominoes are falling

The product, which ZeroMark calls a “fire control system,” has two components: a small computer that has sensors, like lidar and electro-optical, and a motorized buttstock.

a16z-backed ZeroMark wants to give soldiers guns that don’t miss against drones

The RAW Dating App aims to shake up the dating scheme by shedding the fake, TikTok-ified, heavily filtered photos and replacing them with a more genuine, unvarnished experience. The app…

Pitch Deck Teardown: RAW Dating App’s $3M angel deck

Yes, we’re calling it “ThreadsDeck” now. At least that’s the tag many are using to describe the new user interface for Instagram’s X competitor, Threads, which resembles the column-based format…

‘ThreadsDeck’ arrived just in time for the Trump verdict

Japanese crypto exchange DMM Bitcoin confirmed on Friday that it had been the victim of a hack resulting in the theft of 4,502.9 bitcoin, or about $305 million.  According to…

Hackers steal $305M from DMM Bitcoin crypto exchange

This is not a drill! Today marks the final day to secure your early-bird tickets for TechCrunch Disrupt 2024 at a significantly reduced rate. At midnight tonight, May 31, ticket…

Disrupt 2024 early-bird prices end at midnight

Instagram is testing a way for creators to experiment with reels without committing to having them displayed on their profiles, giving the social network a possible edge over TikTok and…

Instagram tests ‘trial reels’ that don’t display to a creator’s followers

U.S. federal regulators have requested more information from Zoox, Amazon’s self-driving unit, as part of an investigation into rear-end crash risks posed by unexpected braking. The National Highway Traffic Safety…

Feds tell Zoox to send more info about autonomous vehicles suddenly braking

You thought the hottest rap battle of the summer was between Kendrick Lamar and Drake. You were wrong. It’s between Canva and an enterprise CIO. At its Canva Create event…

Canva’s rap battle is part of a long legacy of Silicon Valley cringe